Visualizing the formation of the Kondo lattice and the hidden order in URu(2)Si(2).
نویسندگان
چکیده
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope to examine the novel electronic states that emerge from the uranium f states in URu(2)Si(2). We find that, as the temperature is lowered, partial screening of the f electrons' spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T = 17.5 K, URu(2)Si(2) is known to undergo a second-order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states.
منابع مشابه
Long range order and two-fluid behavior in heavy electron materials.
The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments h...
متن کاملParasitic small-moment antiferromagnetism and nonlinear coupling of hidden order and antiferromagnetism in URu2Si2 observed by Larmor diffraction.
We report for the first time simultaneous microscopic measurements of the lattice constants, the distribution of the lattice constants, and the antiferromagnetic moment in high-purity URu(2)Si(2), combining Larmor and conventional neutron diffraction at low temperatures and pressures up to 18 kbar. Our data demonstrate quantitatively that the small moment in the hidden order (HO) of URu(2)Si(2)...
متن کاملسیستمهای ناکام و همبسته الکترونی
Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...
متن کاملادغام الگوی شبکهای هولشتاین - کاندو برای توصیف نظریه ابررساناهای دمای بالا
It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph) interactions as the pairing mechanism (ARPES),...
متن کاملHOW THE KONDO EFFECT CAN EXIST IN Gd INTERMETALLIC COMPOUNDS
Based on the crystal and magnetic structural properties of some Gd intermetallic compounds, it is shown that with increasing conduction electron concentration, Gd experiences electronic and magnetic instability, and that these behaviors point to the appearance of Kondo Lattice. We suggest that the conduction electrons have gained local character. It is shown that Kondo effect should be observed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 23 شماره
صفحات -
تاریخ انتشار 2010